Skip to main content

Data Engineer

Job type: Effective

Work model: Remote

Also for PwD

Job description

ioasys specializes in creating unique solutions for bold companies. We are experts in bringing the best of the digital universe to our customers and transforming, rethinking and evolving society. We help brands to innovate following the principles of agile methodology and user-centric approach.


We are part of the Alpargatas Group, a century-old, global and innovative company. Walking together, we develop end-to-end solutions, promoting the digital transformation of large companies in the national and international market such as: Banco Inter, Burger King, BASF, VR Benefícios, LATAM Airlines, Pfizer, Localiza, Fleury, DMCard, Fundação Dom Cabral and Suvinil.


We provide an environment dedicated to growth, with incredible professionals and constant learning in offices that stimulate creativity and productivity. You will be on a horizontal and transparent team that not only values ​​your ideas, but also expects you to be a part of building the company with us.


We believe in our work and carry in our DNA the certainty that we have the power to impact millions of lives with each project we carry out. We are not just thinkers, we are doers!


For the Data Engineer vacancy, we are looking for a professional who knows how to provide the best technical environment for data scientists to create their deliverables, define, manage and optimize cloud solutions in terms of performance and costs, execute and optimize the network configuration, write technical design documents related to overall performance, data warehousing, data lake/data warehouse, CI/CD, DataOps, data pipeline solutions (ETL/ELT), IaaS, PaaS and SaaS.

Responsibilities and assignments

  • Write technical design docs;
  • Manage databricks environment;
  • Develop solutions using (Python/Spark);
  • Define best practices for relational and non-relational data storage;
  • Implementation of improvements in Data Lake and Data Warehouse environments;
  • Implement and manage SQL and NoSQL databases;
  • Discuss and define best solutions for system integrations;
  • Support the creation of data governance processes;
  • Discuss best solutions to support the self-service BI strategy in the company.

Requirements and qualifications

  • Familiarity with agile methodologies;
  • Experience in Databricks, SQL, Python, ETL/ELT, Data Modeling, Data Lake, Data Warehouse and data visualization tools;
  • Knowledge on AWS Glue, S3, Azure Devops;
  • High learning ability.

Additional information

  • Dynamic workspace to practice your abilities;
  • Flexible hours;
  • Day Off – Birthday;
  • Talks and Courses ministered by our specialists;
  • English Classes (In Company);
  • Zenklub;
  • Discounts of up to 75% on Alpa products;
  • PET license;
  • Gympass;
  • GetAbstract;
  • Internal program with products store.

Come with us! Sign up there! :)

Process stages

  1. Step 1: Registration
  2. Step 2: Pré Entrevista
  3. Step 3: Entrevista Técnica
  4. Step 4: Em Análise
  5. Step 5: Entrevista Cultural
  6. Step 6: Finalistas
  7. Step 7: Hiring

Quem somos

Cocriamos experiências significativas, feitas por pessoas e projetadas para pessoas.


Somos uma empresa de tecnologia, inovação e design orientada por dados e pautada na agilidade. O nosso foco é a cocriação de soluções digitais com uma entrega ágil de ponta a ponta. Desde o desenho da estratégia de transformação, estudos de mercado e tendências, formação e capacitação de times até o desenvolvimento do produto final.


Colocamos isso em prática com algumas das maiores empresas do mercado nacional e internacional, como: Suvinil, CVC, Fleury, VLI, BASF, Americanas Delivery, L’Oreal, Ânima e Vale.


Fazemos parte da Alpargatas, um grupo centenário de marcas desejadas e hiperconectadas como a Havaianas. Somos Alpa com o objetivo de acelerar cada vez mais a sua transformação digital, uma empresa global, inovadora e sustentável, que fala muitas línguas e conecta diferentes pessoas com um mesmo propósito: o de surpreender sempre.



?